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Exploiting exact spherical solutions of the Brans-Dicke equations, we study 
various definitions of the total mass of a body in this theory. We argue why 
the vacuum spherical solutions involve--in general--two arbitrary constants of 
integration. We discuss the dependence of the total mass on these constants. 

1. I N T R O D U C T I O N  

The equivalence of the inertial and passive gravitational masses of a 
body, which is supported by sensitive experiments (Weinberg, 1972), lies at 
the foundations of general relativity. 

A body experiences a force proportional to its passive  gravitational mass 
when put inside a background gravitational field. The same body produces 
a gravitational field which is asymptotically proportional to its active gravita- 
tional mass. On the other hand, when the body is acted on by, say, electromag- 
netic forces, it undergoes an acceleration which is inversely proportional to 
its inertial mass. The inertial force which appears in accelerating reference 
frames is also proportional to the body's inertial  mass. 

In Newtonian physics, all the various definitions of mass are taken to 
be identical, while in the general theory of relativity, the equivalence of  
passive and active gravitational masses is still disputed by some authors. 

Bonnor (1992) recently claimed that the active and passive gravitational 
masses of a body can be different. He calculated these quantities for a static 
sphere whose structure is given by the Schwarzschild interior solution for a 
perfect fluid of uniform rest density. He concluded that the fractional differ- 
ences between the active and passive gravitational masses for the sun, earth, 
and moon are --2 • 10 -6, --7 • 10 -l~ and --3 • 10 -11, respectively. 
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Bonnor used the coefficient of acceleration in the equation of motion of a 
perfect fluid and integrated this over the proper volume to obtain the inertial 
(or passive gravitational) mass. 

Rosen and Cooperstock (1992) took into account the gravitational energy 
of a body. They argued against Bonnor and showed that the active and passive 
gravitational masses are equal, if we include this self-energy. 

Subsequently, Herrera and IbanEz (1993) showed that for the Schwarz- 
schild sphere, the difference between the active and passive gravitational 
masses as calculated by Bonnor is equal to the work required to build up 
the sphere. They concluded that the total energy of a body is the same as 
M~, but is different from Mn as defined by Bonnor (with p + p as the passive 
gravitational mass density). 

In the Brans-Dicke theory of gravitation (Brans and Dicke, 1961), which 
was originally proposed to include Mach's principle, the problem of the mass 
of a body becomes more involved. In this paper, we discuss various definitions 
for the mass of a body. We exploit exact spherical solutions of the BD 
theory which are asymptotically flat and contain two arbitrary parameters 
(or constants of integration). We study the dependence of the total mass of 
the configuration on these two parameters. 

2. ACTIVE AND PASSIVE GRAVITATIONAL MASSES IN 
GENERAL RELATIVITY 

Far enough from an arbitrary material body, it is g0o in the metric 
coefficients which effectively determines the state of motion of a slowly 
moving test particle. In general relativity, the motion of a test particle is 
governed by the geodesic equation 

dx  ~ dx  f~ d2x----~ + r ~  - -  - 0 ( I )  
d'r 2 d'r d r  

Accordingly, we can determine the act ive  mass of the central body by compar- 
ing g00 with - (1  - 2 G M J r )  in the limit r ---> ~. 

A more elegant formalism to find M~ is to define the energy-momentum 
pseudotensor of the gravitational field. The total energy (mass) of the com- 
bined gravitational field plus the material system is then (Weinberg, 1972) 

M :  eO : f TOOd3x : 1 f (Ohjj OhiA 2 
-167r'---G k~Sx i -~xj)nir  d O  (2) 

In this equation, ,r~" = t ~v + T~V is the total (gravitational plus material) 
energy-momentum pseudotensor, and h o are the spacelike components of the 
infinitesimal deviations from the Minkowski metric tensor at large distances 
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gsj = "q0 + h0, i, j = 1, 2, 3 (3) 

Note that in order to perform the integral (2) it is necessary to choose quasi- 
Euclidean coordinates such that 

Xi r = (XiXi) 1;2, ni = --, and d ~  = sin 0 dO dqb (4) 
r 

We use Weinberg's notations and conventions throughout this paper. Both 
procedures described above lead to the same Ma for the Schwarzschild metric. 

In order to define the passive gravitational mass, Bonnor (1992) 
employed the energy-momentum conservation equation T;~, ~ = 0, which for 
a perfect fluid becomes 

D ~  
(p + p)a ~ = (gW~ - U~U v) v.-.r_~ 

O x  ~' 
(5) 

In this equation p and p are the proper energy density and proper pressure, 
respectively, and U ~ is the unit 4-velocity. Bonnor interpreted p + P as the 
inertial mass density of the fluid concerned. The inertial mass density is 
equal to the passive gravitational mass density according to the principle of 
equivalence. The passive mass of the body is therefore 

M e = f (p + p)v/Sg d3x (6) 

Bonnor then calculated M r for a Schwarzschild sphere of uniform rest density 
and obtained 

(()2)3 M p = M ~  l + 4 M ~ + o  M~ (7) 
rl  r l  

where r~ = [3MJ4crp] m, and M J q  is assumed to be sufficiently small. He 
concluded that for a Schwarzschild sphere of sufficiently small MJr l ,  the 
passive gravitational mass is greater than the active gravitational mass and 

Mp-M. 4Mo 
Ma 5 r I 

(8) 

Rosen and Cooperstock (1992) showed that the mass equivalent of the gravita- 
tional energy of the fluid element which was used by Bonnor to calculate 
M;, was not taken into account by him. They thus considered this contribution 
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and used the Lorentz tensor 

O~ = I ~ (T~ + t~) d3x (9) 

to derive the following expression for the passive (or inertial) mass of the 
body: 

Mp = 0 + p + to o - g r a3x (10)  

They then showed that in the case of a Schwarzschild sphere, this leads 
precisely to the same expression as that for the active gravitational mass. 
Also, Herrera and Iban~z (1993) showed that the difference between M~ 
and Alp as defined by Bonnor is equal to the work done in building the 
Schwarzschild sphere. 

3. MASS OF A BODY IN BRANS-DICKE THEORY 

Let us now turn to BD theory, and reexamine the mass of a body in the 
framework of this theory. The BD field equations, which are a generalization 
of GR, read 

D% - 8 v  
3 + 2~ T ~  

Re, 1 R = 8~ (11) 

where 

1 ), 
T+r 8w+ +'~+;" - 2 g~b;p+;P + ~ (+;~,~ - g~D2+) (12) 

In these equations, qb is a real scalar field (the BD field), and to is a dimen- 
sionless parameter. The Einstein field equations are the o~ --) ~ limit of (11). 
Assuming the spherically symmetric, static metric 

d"r 2 = B(r) dt 2 - A(r) dr 2 - r 2 d0 2 - r 2 sinZ(0) d~ 2 (13) 

we obtained exact vacuum solutions through conformal transformations 
(Askari and Riazi, n.d.). 

These solutions, which contain three arbitrary parameters r0, 8, and 
B0, read 
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and 

r = 2"y(+(r)/dgo) v-(8+l)/2 
ro 1 - ( + ( r ) / + o )  2~ 

B(r) = Bo[~b(r)]a-' 
L-gT0 3 

(14) 

(15) 

A(r) - r4B(r)+'2(r) (16) 
Q~ 

where 

8 2 (200 + 4 / 1  @ _ 0 0 + 3 1 2 + _  and ~b0= 
2 4 \~---+-3] G 

G is Newton's gravitational constant. It is straightforward to derive the follow- 
ing expansions for the BD field and metric coefficients from (14)-(16): 

+ [  (00 - '6T)Q~ (200 + 3 ' / 2 6 - M 7  \ ~ - ~  } + llQ~ ( ~  + 3) _ ~ ] 3 M a  + 

G2M2Qs 
• 2r 3 + "-" (17) 

B(r) = 1 - 2G2MaQs (200 + 3~ 
2GM~r + r 2 \ 2 ~ - - ~ ]  

+ [(00-16)Qs/200+3']  5]G3M2Qs 
6Ma \2--g-T--3] + r ~ + "'" (18) 

[ 1 A(r) = 1 + 2--G-Gr M a -  ~ Qs] 

G2M 2 . . . .  a 

r2 + "'" (19) 
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in which we have defined the new constants of integration Ma and Qs as 

[2to + 3\ 1 
2Ma = I ~ - ~ ) Q s (  - ~) and Q.~ = -+0r0 

and put B0 = 1 (asymptotically Minkowskian metric). We have identified 
the integration constant Ma as the total active mass of the configuration. This 
(active) mass naturally includes the mass of the central material body, the 
gravitational field energy, and the energy of the +-field. The reason for 
identifying Ma with the active gravitational mass is as follows. The motion 
of a small test particle is still governed by the geodesic equation in BD 
theory. The total active gravitational mass (in accordance with its usual 
definition given in the introduction), is obtained by comparing the weak- 
field limit of the geodesic equation with Newton's second law. 

In fact, the geodesic equation in the form of equation (1) is not rigorously 
valid in BD theory and even the weak equivalence principle is violated for 
massive bodies because of the Nordtvedt effect (Nordtvedt, 1968). However, 
when we are considering the motion of a small laboratory-sized test particle in 
a weak background gravitational field, deviations from the free-fall geodesic 
[equation (1)] are of the order of [1/(2 + o~)]EJM ~ 10 -39, which is incredibly 
small and therefore negligible (Will, 1981). 

Following the conventional method in GR, let us extract from the Einstein 
tensor a first-order pseudotensor (Weinberg, 1972) 

G O ) = R ( t ) _  1 ~ ~ ~ ~q ~R(~ l)• (20) 

R(~ ) and R(x l)x are computed such as to include only first-order terms in 
hey, where 

g ~  = "q~ + h ~  (21) 

"qr is the Minkowski tensor (note that h ~  need not be small). The exact BD 
equations can then be written as 

8w 
G (l)~ - [T~{ + T,~ ~ + t ~]  (22) + 

where T~4 ~ is the matter energy-momentum tensor, T~+ ~ is the +-field energy- 
momentum tensor, and t ~ is the gravitational field energy-momentum pseu- 
dotensor. ~(~) obeys the linearized Bianchi identities 

- -  - 0 ( 2 3 )  
Ox p- 
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We can therefore conclude that "r ~ defined according to 

1 
,r~ = tpG ---2- [Tb~ + T ~  + t~]  (24) 

is locally conserved 

cgT~ v 
- -  = 0 ( 2 5 )  
Ox v. 

Also, the quantity P~ defined according to 

P~ = l "r ~ d3x  
Jv 

(26) 

is naturally interpreted as the total energy-momentum '4-vector.' It should 
be remarked that px is not generally covariant, but is a Lorentz vector. It can 
be shown that pO is exactly expressible as (2) with G replaced by [(2co + 
4)/(2to + 3)]/60. Let us see what equation (2) leads to when applied to our 
solutions of the BD theory. It can be easily shown that 

hij = n in f lA ( r )  - 1] (27) 

and therefore 

[2co + 3\  -] hij = 2__GGr Ma - Jn,n, + O(r -2) (28) 

which conforms with h 0- of the Schwarzschild metric only in the case Q~ = O. 
We can also show that 

Oni __ ~i~._-- nin] (29) 
3x d r 

and 

O(ninj) _ 2ni 

ax j r 
(30) 

dA(r )  Ohij _ 2ni[A(r)  - 1] + ni (31) 
Oxj r dr  

Ohjj O h i j _  2 n i [ A ( r ) -  1] 
(32) 

Ox i Ox j r 
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Equation (2) then leads to 

r [2to + 3 \  
po = lim ~-~ [A(r) - 1] = M a - ['~'--~-'~]Qs (33) 

r---~oo \ / 

We thus come to the conclusion that p0 as defined via (28) (which results 
from the concept of the total mass of a system in special relativity) does not 
coincide with the usual definition of active gravitational mass unless Qs = O. 

Note that such a case does not arise in GR. As GR is the to --) 0% 
Qs -~ 0 limit of BD, pO = Ma in GR. 

Note that the energy of the qb field is contained in both pO and Ma, and 
the difference between these two cannot be assigned to the BD field energy 
at large distances. 

Even when there is a field (like an electric field) which extends to infinity, 
we still have p0 = Ma in GR. Consider, for example, the Reissner-NordstrOm 
metric, which describes the space-time around a spherically symmetric electric 
charge q with a total active mass M~: 

= (  q2) ( 2 G M a q 2 ~  -1 r 2 
d'r 2 1 2GM~ + dt 2 - 1 + dr  2 -- dO 2 

r 7 r 

- -  r 2 sin20 dq~ 2 

As the metric coincides with the Schwarzschild metric up to the first order 
in 1/r, we conclude that pO = Ma, i.e., the same value as the active mass 
calculated from the geodesic equation. 

The concept of the inertial mass of a body as the total energy (including 
all sorts of it), according to what we have learned from special relativity, 
encourages us to assess that p0 might be interpreted as the total inertial mass 
of the body. 

Finally, let us derive an expression which facilitates the computation of 
total active mass in terms of the matter and qb-field energy-momentum tensors. 
The following identity can be proved easily: 

We also have from (11) 

1[ 
Gtt= 7 1- -~r  (34) 

Eliminating G~ between (34) and (35) and integrating from r '  = 0 to r, 
we obtain 

- 8 ~  
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1 d r , r T~tt 
- - -  dr = -87r r '2dr' 

dr' 

- 8"nJo ~b r'2dr'  

(36) 

A first integration of  the left-hand side integral yields 

A(r) 1 +--r )o + r  '2dr' +--r jo q b r '2dr' (37) 

The second integral on the fight-hand side can be expanded as 

--~- r'2 dr ' = --~ r'2 gr ' + 0 

Comparing the O(1/r) terms in equation (37) with the corresponding term in 
the expansion for l/A(r) as obtained from (19), we obtain the following rela- 
tionship: 

2 t o + 3  
M a  - -  _ _  

2 o ~ + 4  
fo* T~, r2dr 

fo ~ T~, r2 dr ] - 4"rr (~b/~bo------) (38) 

It can be noted that as to ~ ~, we have Q~ --) 0, + ~ 4)0, and 

Ma -+ -4~r T~,r 2 dr = 4"rrr2pmatter(r) dr (39) 

which is the usual expression for the total mass (including the gravitational 
energy) in general relativity. 

The exterior metric represented by the expansions (18) and (19) contains 
two constants of integration Ma and Qs. We have previously called Qs the 
scalar charge of the configuration. What is the physical content of Qfl This 
constant has emerged as a result of the first integration of equation (11) 
in vacuum: 

/ ~1/2 

(40) 
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It is related to the energy-momentum of the central matter via 

_ -2 I ~ Tx~ d3x 
Q~ 2oo +~ (41) 

which results from (11). 
The important point learned from equation (40) is that the two parameters 

Ma and Qs are not really independent. For a configuration of mass Ma, Qs is 
determined uniquely by the state of matter in the central material sphere. 
For example, if the central body is made of a traceless energy-momentum 
tensor T~tx = 0, then obviously Q~ = 0 by virtue of equation (41) and M, 
= p0. On the other hand, it can be shown through the post-Newtonian 
formalism, or direct calculation (see the Appendix), that for nonrelativistic 
material (p < <  p) 

Qs _ 2 (p < <  p) (42) 
Ma 2to+ 3 

4. CONCLUSION 

Various definitions for the total mass of a spherically symmetric body 
in general relativity and BD theories of gravitation were discussed. We showed 
that the conventional definition of the Lorentzian 4-momentum of the body 
leads to a value for the total mass which is different from the total mass as 
inferred from the geodesic equation. We conclude that the total active and 
total inertial masses of a body in BD theory are not necessarily equal. On 
the other hand, the inequality of passive and inertial masses (violation of the 
weak equivalence principle) in BD theory is already well known (Nord- 
tvedt effect). 

Finally, we obtained an integral representation for the total active mass 
of a body in BD theory in terms of the energy-momentum tensors of matter 
and BD scalar field, and discussed the relation between the active mass and 
the 'scalar charge.' 

APPENDIX 

We present a direct proof of equation (42) for a perfect, nonrelativis- 
tic fluid. 

The following identity can be proved easily: 

1 0 [v/-~qb(ln B),p ] = -8'rrT~, + (1 + oJ) rn2r b (A1) 
Ox---7 
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We also have 

T~x = T~4, + T~ti ~ T~, (p < <  p) (A2) 

From the first equation in (11) and (A2), we can obtain 

1 0 (.f-~b.p) (A3) -8r + (1 + co) tzz~b = -(co + 2) ~ Ox--- ~ 

Equation (A1) then leads to 

1 0 [v/~b(ln[BqbZ(,o+z)])o ] = 0 (A4) 

Integrating this equation over a sphere of radius r and using Gauss' law, 
we obtain 

2(2+co) 

Bin(r) : Bd [ (~(r) ] -  L-~-o J (15)  

Note that this is an interior identity, while a similar equation [equation (15)] 
holds outside the material sphere. 

Matching the interior (15) and exterior (15) solutions at the boundary 
of the material sphere, we obtain 

- 1 = - 2 ( 2 + c o )  

Now, by using the relation 2Ma = [(2co + 3)/(2to + 4)]Qs(1 - 8), we easily 
derive equation (42). 

If we also perform the same calculations for an isothermal sphere 
(p = ep), we obtain 

Q ~ _  (2o~ + 4 / [  1 -  3e ] 

Maa - ~,2o~ + 31L(2co + 3) + (o~ + DOe - i )  

Note that in the limit e < <  1, the above equation reduces to equation (42). 
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